COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Writing Optimal C Code for ST7 with Cosmic C

Compiler

[/)
OSMIC

Software
C code optimizations
\ for ST7 /

This technical article provides the basics for writing optimal ST7 applications by taking a

real-life example and showing how it can be improved modifying both the code and the

compiler options.

Application Note N °64 -1- 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

The ST7 and Compiler registers

/ ST7 Registers I \

Compiler Processor

accumulator 8 bits

index 8 bits

(ram in short range)
C_X 2 bytes

c_y 2 bytes index 8 bits (+code prefix)

nw < X »

c_lreg 4 bytes stack pointer 8 bits in page 1

CC condition code 8 bits

\ PC program counter 16 bits /

@snﬂlc ST7 Code Optimization 2

Software

The ST7 has a set of 8 bit registers. The main registers, from the compiler point of view, are
shown in the slide. Note that using the Y register requires 1 byte more than using the X
register to do the same thing (because of the code prefix necessary to use Y), therefore the
compiler will always try to use X when possible.
As the available hardware registers are not enough for anything but the simplest tasks, the
compiler reserves 4 to 8 bytes of RAM memory for its own use and gives them conventional
names as shown in the slide:

- ¢ _xandc_y are two 16 bits general purpose registers that are always defined

- ¢ _lregis a 4 bytes register that is used when long or float variables are used in the

application

Note that the use of ¢ x, ¢_y and c_Ireg is transparent to the users, but you can find these
symbols if you look at listing files, therefore you need to know what they are if you want to

understand optimizations.

Application Note N °64 -2- 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

The ST7 Memory Map

/ ST7 Memory I \

0x00 .. OxFF 0x100..0x1FF 0x200 OxXFFFF
I/O_ Ram Ram / Stack Ram Code Interrupt
registers Constants Vectors
P ———— T
Short Addressing Long Addressing
(@tiny) (@near)
short access: 2 stack access: 4(x)/6(y) long access: 3
1d a,adrs 1d x,s 1d a,adrl

1d a, (0x100,x)

@s:wc ST7 Code Optimization 3

Software

The ST7 memory map is organized as shown. The first page of 256 bytes (called Page 0, from
0x00 to 0xFF) can be accessed with the short addressing mode, which only requires two
bytes, while the rest of the memory can be accessed in the long addressing mode (3 bytes) or
stack addressing mode (4 bytes using X, 6 bytes using Y).

This shows clearly that it is more efficent, both in terms of code size and execution speed, to
put as many variables as possible in the zero page, either using a memory model which puts
variables there by default (more on this later), or using the @tiny modifier to force variables
in the zero page regardless of the memory model.

Example:

@tiny char aa; // variable aa will be in page zero regardless of the memory model used

Application Note N °64 -3- 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Variables allocation

/ Variables Allocation I \

Short range
Global /

Long range
/ Short range
/ Memory \ Not Mixable
Local Long range

\ Stack /

Gswuc ST7 Code Optimization 4

Software

This slides gives an overview of how the compiler can allocate variables. Global variables can
be either in short range or long range, including mixing the two types in the same application.
Local variables and function parameters can be either in the stack (for reentrant functions) or
in memory, and it is possible to mix, in, the same application, functions that are reentrant with
functions that are not, but, for non-reentrant functions, local variables need to be all in the

same addressing range. Of course the compiler takes care of this automatically.

Application Note N °64 -4- 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

What are Memory Models?

(Memory Models I)
e Physical Stack
+ Stack long +modsl
+ Stack short +mods
e Static Memory
* Memory large +modml
+ Memory medium +modmm
+ Memory small +modms
+ Memory short +modm
\ + Memory compact +modc
@SMIC ST7 Code Optimization 5

The first thing to do in order to produce efficent code is to choose a memory model that fits
the application size and the processor resources. The memory model tells the compiler some
default information about where to store variables and how to access them. This default

behavior is applied to all variables for which the storage class is not specified by the user.

Example:
char aa; // short or long addressing mode depending on the memory model
@tiny char aa; // page zero regardless of the memory model

The first two memory models are called “stack” models because the local variables are put on
the stack, thus making functions reentrant by default. These models are not the most efficent
and should be used only when reentrancy is required or when performance is not an issue.
The last 5 memory models are called “static” model because the local variables are stored at
fixed memory addresses, thus making functions that are not reentrant by default (calling the
function while it is already being executed would overwrite the parameters of the first call).
Static models usually produce tight code, especially the models down in the list. In the second
part of this documents we will see, taking a real-life example, how to choose the best memory

model for a real application.

Application Note N °64 -5- 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

CXST7 Memory Models
(Memory Models I)
Model Stack Globals| Pointers
+ modsl phys long 16 bits
¢ mods phys short 16 bits
¢ modml long long 16 bits
+ modmm long short 16 bits
+ modms short long 16 bits
¢+ modm short short 16 bits
\0 modc short short 8 bits /
@SM/C ST7 Code Optimization 6

This slide shows the details of the different memory models available with CXST7. As you
see, the memory model has an influence on 3 parameters:

- Where and how the stack is managed

- Where global variables are stored by default

- How long the default pointer is.
In the stack models (first two lines), the actual stack (hardware) is used for local variables,
and the compiler generates push and pop instructions. Global variables can be in short or long
range and the pointers are 16 bits wide (that is, a pointer can point the whole 64k addressing
range of the ST7).
The static models offer all combinations of simulated stack (that is, local variables at fixed
addresses, either long or short) and global variables positioning (long or short).
The last model (compact) is suitable for devices that only have page zero (ST7 LITE),
therefore everything need to be in there. As a consequence, the default pointer is only 8 bits as
this is enough to cover the whole data space. In this case, pointers to the code space
(constants, for example pointers to fixed strings) need to be declared with the @short modifier

in order to make them 16 bits.

Application Note N °64 -6- 07/09/2004

COSMIC SOFTWARE

Application Note N °64 — Writing optimal C Code for ST7

Variables Control

/ Variables Control I \

Short range
Global -z
\ Long range

___——— Short range

/Memory (memory model)

T Long range

Local
9 O Stack y

Gs:vnc ST7 Code Optimization 7

Software

This slide shows how to override the memory model settings and place variables manually.
For global variables it is very simple: just use (@tiny or @near in the variable declaration, and
the variable will be forced respectively in the short or long addressing range.
Local variables cannot be controlled one by one, but rather function by function. Declaring a
function with the @stack attribute
@stack my_func(car a, char b)
{

char c;

// function code
b
will force the function to be reentrant regardless of the memory model, and therefore the local
variables and parameters will be in the hardware stack.
Conversely, declaring a function with the @nostack attribute will force the function to use the
simulated stack regardless of the memory model, and therefore the local variables and
parameters will be at fixed memory addresses (short or long range, depending on the memory

model).

Application Note N °64 -7- 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Functions Efficiency

(r Functions Efficiency I)

Physical Stack Memory Stack
Recursive / Reentrant No stack frame code
BT Efficient variable access
. But
Maximum 256 bytes
Stack frame code Not Recursive / Reentrant
\ Variable access cost Function calls by Pointer/
‘os: MIC ST7 Code Optimization 8

This slide summarizes the advantages of using the hardware stack versus the simulated stack:
the main advantage of the hardware stack is to make functions reentrant, but everything is
bigger and slower. Conversely, the memory stack allows efficent code but functions are
neither recursive (which is usually not too bad in an embedded application) nor reentrant
(whih means that you cannot call the same functions in an interrupt handler and in the main

flow).

Application Note N °64 -8- 07/09/2004

COSMIC SOFTWARE

Application Note N °64 — Writing optimal C Code for ST7

Variables Efficiency

/ Variables Efficiency I)

Short range Long range
Shorter code / time Limited by device
Allow direct pointers
. . But
Allow bit instructions
But No direct pointers
\ Maximum 128 bytes No bit instructions /
‘ osmIC. ST7 Code Optimization 9

This slide summarizes the advantages of using short range variables versus long range ones:
as you see, the only advantage of long range variables is that there is more space to store them
(only limited by the RAM available on the device). Short range variables are more efficent
from all point of view = one of the tricks to produce good code is to fill up the short range

section as much as possible and/or use it for the variales that are accesses more often.

Application Note N °64 -9- 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

BIT Instructions

/ Bit Instructions I \

if (flags & 0x08)

Short range: 3 Long range: 7
brclr _flags,3,L123 1d a, flags
bep a,#8
jreq L123
‘ os: mic ST7 Code Optimization 10

Here is an example of how a variable in the short range can sometimes be dramatically more
efficent than the same in long range.

If you want to test a single bit in the variable with the instruction

if (flags & 0x08) { }

the compiler will generate a single assemler instruction (3 bytes) in the first case, while it

needs 3 instructions (7 bytes) in the second case.

Application Note N °64 -10 - 07/09/2004

COSMIC SOFTWARE

Application Note N °64 — Writing optimal C Code for ST7

Pointer Efficiency

(Pointer Efficiency I)

i = *p;
Short range: 3 Long range: 13
1d a, p
1d a,[p.w] 1d c_x,a
1d _i,a 1d a, ptl

1d c_x+1,a

1d a,[c x.w]

\ “

@smc ST7 Code Optimization .

Software

Here is another example of how a variable in the short range can be dramatically more
efficent than the same in long range, this time related to pointers: if you want to access a
memory location via a 16 bits pointer, it requires only 2 assembler instructions (3 bytes) if the
pointer is in the short addressing range, whereas, if the pointer is in the long addressing range,
you first need to copy it in the short range (into the compiler working register c_x) for a total

of 6 assembler instructions (13 bytes)

Application Note N °64 -11- 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Data allocation

/ Data Allocation I\

Initialized .bsct
Short range = f @tiny char shvar;
Non initialized .ubsct
/ const < .const const int cvar;
Variable _Bool > .bit _Bool bvar;
eeprom .eeprom @eeprom int eevar;
Initialized .data
Long range “ @near char lgvar;
\ Non initialized .bss)
‘osyf!c ST7 Code Optimization 12

This slide reminds how the compiler allocate different types of data into different sections.
This is important to know because all sections used in the application must be properly
declared in the linker command file.

Note that, when using initialized data, you need to use a specific startup file for the
initialization to actually take place before starting to execute the user code; please refer to te

CXST7 user manual for more details.

Application Note N °64 -12 - 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Code Allocation
f Code Allocation \l
Functions text
Literals .const
* +split one function per section
* +nocst literals and const in code section
\ * +nobss all data considered as initialized J
(osmic ST7 Code Optimization 13

Code allocation is very simple : all code goes by default into the .text section and all literals

(constants) go into the .const section.

The +split option tells the compiler to generate the code for each function into a separate

section in such a way that the linker can eliminate uncalled functions: however this requires

marking an entry point in the linker command file, see the CXST7 user manual for more

details.

Application Note N °64

-13 -

07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Model Selection

f Model Selection I\

1) Build application with +modsl

largest model, no constraints

2) Check data / stack size in map file

segments .data and .bss and stack usage

3) Rebuild with the closest model from the figures

K4) Enhance by moving objects inside/outside short rangy

Gsmlc ST7 Code Optimization 14

Software

In this second part of this application note, we will show one possible way to optimize an

existing application. Before going into the details of the steps outlined above, note that this is

only one possible way; we have chosen this one because it is vey general and should work

with any kind and dimension of applications, but users can choose other ways (which usually

means playing around with the same ideas, but in a different order).

So, supposing you have an application that already compiles, but that you don’t know much

else about it, here is how you can optimize it:

First, compile it with the biggest and more general memory model available. The goal
of this step is simply to build the whole application in such a way to have access to the
map information generated by the compiler and linker

Check the data / stack size in the map file

Choose the smallest model that fits

Refine by manually moving objects in and out of the short range

The following slides show these steps applied on a real-world application that we have helped

one Customer to optimize.

Application Note N °64 -14 - 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Real-world example : memory model selection

=

_

Model Selection \

+mOdSI Segments

start 0000e800 end 0000eflb length 1819 segment .text
start 0000e000 end 0000e0el length 225 segment .const

start 00000080 end 00000080 length 0 segment .bsct

start 00000080 end 00000084 length 4 segment iram

start 00000100 end 00000103 length 3 segment .data, initialized
start 0000ef23 end 0000ef26 length 3 segment .data, from

start 00000084 end 00000084 length 0 segment .share

start 00000000 end 00001bal length 7073 segment .debug
start 00000103 end 00000151 length 78 segment .bss
start 0000ffe0 end 00010000 length 32 segment .const
start 0000eflb end 0000ef23 length 8 segment .init

4 bytes in short range 81 bytes in long range /

‘ osmic
Software

ST7 Code Optimization

15

Our Customer code, when compiled with the Stack Large model (+modsl) gave the results

shown above: code was 1819 bytes, 4 bytes in the short range (the ¢ x and c¢_y compiler

registers) and 81 bytes in the long range (all the application variables). The stack usage was

77 bytes (next slide)

Application Note N °64 -15- 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Real-world example : memory model selection

/ Model Selection 1)
Stack usage

----------- 4 bytes in short range

codem.o:

—fnitialization s 81 bytes in long range
Brrore.o: 77 bytes on the stack
GetLastError 2 (2)

_SetLastError 2 (2)

Interrupt.o:

_InterruptEnable > 2 (2)

_InterruptInit 2 (2)

Tools.o:

_tsInterpolate 8 (5)

i2c.o:

_I2CInit 3 (3)

_TI2CRead 6 (4)

_I2CRW 11 (5) d
“Tocurite 7 try +modms

\Stack size: 77

@s:wc ST7 Code Optimization 16

Software

This data suggest that the Memory Compact and Memory Short models will not fit (as both
would try to put Stack and Globals, that is 77+81=158 bytes into the 128-4=124 available
bytes of the short addressing range). Let’s then try the Memory Small model (+modms) that
will put the stack in page 0 and the globals in the long range.

Application Note N °64 -16 - 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Real-world example : memory model selection

/ Model Selection I\

function _I2CRW is reentrant

in header file 12C.H:
extern @stack BYTE I2CRW(I2CDEVADDR ucDevAddr,

in source file 12C.C:

@stack BYTE I2CRW(I2CDEVADDR dev_addr,

_ 74

@s:wc ST7 Code Optimization 17

Software

By trying to compile the same application with the Memory Small model, we get

Linker error: function [2CRW is reentrant

which means that this function is called both in an interrupt handler and in the main flow and
should therefore be reentrant in order to work properly (when we compiled with the Stack
Long model we did not have this error because, in this model, functions are reentrant by
default).

Here we need to modify the code (function and prototype) in order to force this function to be

reentrant using the @stack modifier as shown above.

Application Note N °64 -17 - 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Real-world example : memory model selection

start
start
start
start
start
start
start
start
start
start
start

0000e800
0000e000
00000080
00000080
00000100
0000ed78
00000084
00000000
00000103
0000£fe0
0000ed70

end
end
end
end
end
end
end
end
end
end
end

0000ed70
0000e0el
00000080
00000084
00000103
0000ed7b
00000009
00001c61l
00000151
00010000
0000ed78

Segments
length 1392
length 225
length 0
length 4
length 3
length 3
length 53
length 7265
length 78
length 32
length 8

segment
segment
segment
segment
segment
segment
segment
segment
segment
segment
segment

.text
.const
.bsct

iram

.data, initialized
.data, from
.share
.debug

.bss

.const
.init

/ Model Selection I\

+modms

\ 57 bytes in short range 81 bytes in long range /

‘ osmMic
Software

ST7 Code Optimization

18

Once we have modified the [2CRW function to be reentrant, the application builds fine in

the Memory Small model, and we can compare the results in the map file with what we got

for the Stack Long Memory model.

The code is already much smaller (1392 vs 1819, that is 23% smaller) and we see that we still

have free space in the zero page: this page currently holds the short range (57 bytes) and the

stack (33 bytes, next slide), therefore there still 128-(33+57)=38 bytes available.

Application Note N °64

- 18 -

07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Real-world example : memory model selection

/ Model Selection I\

+modms S
are: areas

------------ 57 bytes in short range
ErrorP.o:
_SetLastError on stack (2) 81 bytes in |ong range
Interrupt.o:
_EIO0IntHandler on stack (11) 33 bytes on the stack
_EIlIntHandler on stack (5)
Tasks.o:
_Taskl 00000084-00000085 (2,0)
“Task2 00000084-00000087 (4,0)
“Task3 00000084-00000084 (1,0)
Tools.o:
_tsInterpolate 00000086-00000088 (0, 3)
i2c.o:
_I2CInit 00000084-00000084 (1,0) force some data in |ong
_I2CRead on stack (4)
“T2CRW on stack (5) range (@near) and
“I2CHWrite 00000087-0000008a (1,3)
“I2CWriteWait 00000084-00000086 (0, 3)

tack size: 33 try +m0dm /

Gs:wc ST7 Code Optimization 19

Software

38 bytes available in page zero are far from enough for the 81 bytes currently in the long
range, but here we can take a look at the code and see how the data is structured : if we’re
lucky there will be a few “big” data structures that can be moved in the long range by hand
(with the @near modifier) and we can rebuild with the Memory Short (+modm) model that

will put everything else into page zero.

Application Note N °64 -19 - 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Real-world example : memory model selection

f Model Selection \I
Modules 57 bytes in
““““ short range
ErrorP.o: .
start 0000eb6a end 0000eb72 length 8 section .text 81 bytes N
start 00000102 end 00000103 length 1 section .data I
start 000011le end 0000125a length 316 section .debug ong range
Tasks.o:
start 0000eb72 end 0000ec7f length 269 section .text 1
start 00000108 end 00000148 length 64 section .bss
start 0000125a end 000015e9 length 911 section .debug
74 bytes in
Tools.o:
start 0000ec7f end 0000ecf7 length 120 section .text Short range
start 00000148 end 00000151 length 9 section .bss
start 000015e9 end 000017e2 length 505 section .debug 64 bytes in
long range
\ @near BYTE gVMem[64]; +modm/
GSMIC ST7 Code Optimization 5
oftware

Looking at the module information in the map file and at the source code, we see that there is
an array of 64 bytes that can be forced in the long range with a very simple modification
(shown in the slide). With this array out of the way, we should be able to build in the Memory

Short model, which is the most efficent, as everything is in page zero.

Application Note N °64 -20 - 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Real-world example : memory model selection

Model Selection

start
start

moim

Segments

0000e800 end 0000ecc2 length 1218 segment .text

0000e000 end 0000e0el length

225 segment

.const

stara

start 0000e800 end 0000ed70 length

Segments

1392 segment .text

zEZiz start 0000e000 end 0000el0el length 225 segment .const
start] sta Segments
eEtaill +MOOS|
start
stan start 0000e800 end 0000eflb length 1819 segment .text
stan start 0000e000 end 0000e0el length 225 segment .const
stan start 00000080 end 00000080 length 0 segment .bsct
stan start 00000080 end 00000084 length 4 segment iram
stan start 00000100 end 00000103 length 3 segment .data, initialized
stan start 0000ef23 end 0000ef26 length 3 segment .data, from
start 00000084 end 00000084 length 0 segment .share
start 00000000 end 00001bal length 7073 segment .debug
start 00000103 end 00000151 length 78 segment .bss
start 0000ffe0 end 00010000 length 32 segment .const
start 0000eflb end 0000ef23 length 8 segment .init

opmic ST7 Code Optimization 21
Building with +modm shows a further decrease in code size, down to 1218 bytes. The slide
shows the results for the three models tested.

Application Note N °64 -21 - 07/09/2004

COSMIC SOFTWARE
Application Note N °64 — Writing optimal C Code for ST7

Array efficiency

(/ Array Efficiency I)

i = tab[jl;
extern char tab[1l0]; extern char tab[];
1d a,_j

add a,#low(_tab)
1d x, j

1d c_x+1,a
1d a, (_tab,x)

el et adc a,#high(_tab)

clr a

1d c_x,a

1d a,[c x.w]

\. S

@SMIC ST7 Code Optimization 2

Software

Here is another example of how to write C code in order to help the compiler generate the
most efficent assembler: if you know the array dimension, let the compiler know about it as

well; if the dimension is small, some optimizations will be done automatically.

Application Note N °64 -22- 07/09/2004

COSMIC SOFTWARE

Application Note N °64 — Writing optimal C Code for ST7

10 Registers

(IO Registers I \

IO Registers can be accessed without assignment

c = I2CDR; I2CDR;
1d a,_ TI2CDR 1d a, I2CDR
1d cpc
Ce. ST7 Code Optimization .

Some special function registers need to be read to perform some action (for example to set or
clear a bit): in this case (that is, when you need to read, but you don’t care about the content),
you can simply write the name of the register followed by a semicolon; you will save one

assembler instruction

Application Note N °64 -23- 07/09/2004

COSMIC SOFTWARE

Application Note N °64 — Writing optimal C Code for ST7

Unused Functions

_

+seg
vector.o

- link vectors segment with -k flag

.const -b OxFFEO

/ Unused Functions I \

- compile with +split option

-k

- unused functions are not linked

- marked as *** removed *** in the map file

17

‘ osmic
Software

ST7 Code Optimization

24

If you are not sure that all the functions in your application are ever called (for example

because you are working on an application written by someone else), you can tell the

compiler to check this for you by using the +split option. This option will produce the code

for each function in a separate section and the linker will not link in the functions that are

never called.

Using the +split option requires marking the segment that contains the reset vector with —k in

the linker file, otherwise the linker will remove everything (because the reset vector is not

called by any other function).

Application Note N °64

-4 -

07/09/2004

