
COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 1 - 02/11/2010

Getting started with the PPC tools:

compiler options and linker file

This Application Note describes how to best use the Cosmic Toolchain for PPC depending on

the derivative used (how much RAM and Flash are available) and the application layout (how

much code / constants / ram are required). The main focus is on choosing the right compiler

options and writing (customizing) the linker and startup files accordingly.

Important note: some of the features described in this application note only apply to

compiler version 4.2.8 (November 2010) and higher.

Let us first review briefly the “Memory Spaces” of the compiler, that is, the different ways

that the compiler can use to access code or data:

PPCPPC DEVELOPMENT TOOLSDEVELOPMENT TOOLS 7COSMIC
Software

PPC Memory Spaces

� Data (RAM):
• Short range (@dir, max 64k, use r13 for the base address)
• Long range (@ext, no limits, less efficent)

� Constants (Flash):
• Short range (@dir, max 32/64k, use r0 or r2 for the base address)
• Long range (@ext, no limits, less efficent)

� Code:
• VLE (@vle, best code density, only choice for Z0 cores)
• BookE (no specifier)

� Constants modes:
• -gcm0: 32k max at the beginning of memory (default, best efficency)
• -gcm1: up to 64k based on R2
• -gcm2: unlimited const, with @dir specifying the most efficent 32k
• -gcm3: unlimited const, with @dir specifying the most efficent (64k, based on R2)

� Far (@ext) Const and Data access
• Use of a TOC table pointed by R2: efficent but R2 taken and need to build the table
• Complete address calculation for each access: -gnt option

� Direct access to I/O Registers
• Cosmic provided IO files
• Possibility to use GHS IO files (do not forget the +rev option)

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 2 - 02/11/2010

The executable code can be VLE or BookE: this is often defined once for all for a given chip

(although some bigger chips can mix the two modes by configuring properly the Memory

Management Unit) and we will not analyse it any further in this document.

More interesting for this Application Note, are the different “ways” to access data (including

constants): it basically comes down to build the full 32-bits address of every variable or use

an index register. The first method is more general (no limitations on the size, number, or

placement of the data), while the second is more efficent, as you can see in the following

example:

@ext int extvar; // will be accessed building its full (32 bits) address (8 bytes, 3 cycles)

@dir int dirvar; // will be accessed with an index register (6 bytes, 2 cycles)

void prova(void)

{

 extvar = 3;

 dirvar = 5;

}

3556 ; 33 extvar = 3;

3558 0000 50800000 lwz r4,L6 // load the variable address

3559 0004 4833 li r3,3

3560 0006 d034 stw r3,0(r4) // write the variable

3561 ; 34 dirvar = 5;

3563 0008 4853 li r3,5

3564 000a 546d0000 stw r3,_dirvar(r13) // the variable address is an offset + base register

Selecting the memory model

Once this is clear, we can proceed to define a Memory Model: a Memory Model is a compiler

option that tells the compiler how to make some default choices, like what code to produce

(VLE or BookE), where to place variables (@dir or @ext) and constants (@dir/@ext,

indexed by r0 or r2) and how to manage floating point (using hardware or simulating with

libraries)

The table below shows the memory models available (note that some of them only exist since

v4.2.8, relased in November 2010)

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 3 - 02/11/2010

A few notes about memory models:

- the memory models only cover the more common situations: as you can see, there is no

memory model (for example) that put variables @ext AND produce VLE code by default: if

this is needed, experienced users can create and use their own memory models

- the memory model assigns a space only to those variables that do not have it specified in the

source. For example:

@ext int a; // will go to .bss (==be accessed using the 32bit address) regardless of the memory model

int b; // will go to .bss with +modl, to .sbss (fast access) with any other model

At this point it should be quite easy to select the best memory model for a given application:

the smallest memory model that fits the application will be the best (because the code

produced with this memory model will be smaller and faster).

Examples:

1) for a “small” application (<64kb data, <32kb of constants, no code size limit), you

should select the +modv (VLE) or +mods (BookE) memory model.

2) For a “medium size” application (<64kb data, <64kb of constants, no code size limit),

you should select the +modvc (VLE) or +modsc (BookE) memory model. If the

application use floating point, and if hardware floating point is supported by the chip,

select +modvfc (VLE) or +modsfc (BookE) for a better efficency of floating point

operations.

3) For a “big” application (>64k data and/or constants), you should use the +modl

memory model, so that variables will be @ext by default. Note however, that, in this

way, ALL the variables will be @ext and therefore will be accessed in non-optimal

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 4 - 02/11/2010

way. In order to improve performance, you can split your variables in such a way that

some of them (max 64k, possibly the most used ones) are @dir, while the rest (no size

limitation, possibly the rarely-used ones) are @ext. In order to achieve this, there is

some manual modification needed, and you can do it in two ways: either you start with

a +modv (or other model where the variables are @dir by default) and declare some

variables @ext by hand (you need to do this as long as the remaining @dir variables

fit into 64k) or you start with no model (or another model where the variables are

@ext by default) and you “force” some variables @dir by hand (no more than 64k, but

the more you are close to this limit, the more optimized your application will be).

Note that the smallest chips in the PPC family are VLE-only and do not have more than 64k

RAM or hadware floating point support, therefore the choice of memory models is reduced to

+modv or +modvc.

Memory models and Startup Files

The “startup” is a bit of code that is executed just after reset and before the main program. Its

purpose is to setup some “resources” (initialize the Hardware/RAM, the stack pointer and so

on) that will be used later on (see the end of this document for a detailed description of a

typical startup file).

In most compilers, at least two different startup files exist: one for the case where initialized

variables are used, and one, simpler and faster, for the case where variables are not initialized.

In addition to this, in the case of the PowerPC compiler, two more conditions must be taken

into account:

- r2 needs to be initialized to point at constants or not

- the startup code must be VLE or BookE

According to the conditions above, you must use the correct startup file for your application

by choosing it in the table shown in the next page.

Note that all these pre-compiled versions of the startup file actually come from the same

source (commented later in this document) compiled with different #define: if you need a

special startup file just copy and modify the one provided with the compiler, taking care of

compiling it with the proper defines.

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 5 - 02/11/2010

Writing the linker file

The “linker file” is an input file to the linker that tells it where and how to place all the

different parts of your application (code, data, constants) and what kind of checks to do on

them.

The linker file must be written/customized to include information about:

- the derivative you want to run your application on (FLASH and RAM sizes..)

- the compiler options used (need or not to initialize some registers, like R2 for

accessing big constants), use of the +split options in order to discard unused code..

- some “features” of the application (use or not of initialized variables, use of user-

defined sections to be placed at special addresses...)

The linker file is based on segments (a segment is an unbreakable piece of information of the

same kind), therefore, before looking at a linker file, we must know what kind of information

the compiler will put in predefined segments (actually the Compiler + Assembler generate

sections and the linker combines several sections of the same kind into a segment, see the

User Manual for more details):

.text executable code (BookE mode)
.vtext executable code (VLE mode)
.const text string and constants (32 bits access)
.sconst @dir constants (optimized access based on a register)
.data initialized variables in RAM (@ext, 32 bits access)
.bss uninitialized variables in RAM (@ext, 32 bits access)
.sdata initialized variables in short range (@dir, optimized access based on R13)
.sbss non-initialized variables in short range (@dir, optimized access based on R13)

These are the standard segments that a typical linker file will have to consider, but note that

the list might be shorter or longer:

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 6 - 02/11/2010

- some of the standard segments are sometimes not generated (for example .data and

.bss are not generated in the +modv memory model if you don’t declare any @ext

variable by hand)

- some user segments may be added: even if you don’t add any of your own you are

very likely to see the .rchw and .vector segments that are used in all Cosmic examples

to place the Boot Assist Module and the Interrupt Vectors at suitable addresses in

memory

Note also that some of the segments have a “default placement”: that means that, even if you

forget to specify such a segment in your linker file, the linker will put it in a standard place

(typically attached to another segment) and you will get no linker error: it is not suggested to

rely on this feature; it is better to specify explicitly all the segments in the linker file.

Let’s now see an example of a real linker file, written for a Pictus device with 512k Flash and

40k RAM, and configured for the use of >32kb constants (based or r2) and dead code removal

(+split compiler options).

The file is as follows:

Link command file for Pictus 512k Flash and 40k RAM

4k BAM+vectors, 444k code, 64k consts

Cosmic Software

+seg .rchw -b 0 -m 0x4000 -n rchw -k # bam start address

+seg .vector -a rchw -n vect -r 11 -k # vectors

+seg .vtext -b 0x4000 -m 0x6c000 -n vtext -it -r 2 # code

+seg .sconst -b 0x70000 -o 0x8000 -m 0x10000 -n sconst -r 2 # constants

+seg .sdata -b 0x40000000 -o0x8000 -n sdata -r 2 -id # data

+seg .sbss -a sdata -n sbss # uninitialized data

+def __sbss=pstart(sbss) # start address of bss

crtsivc.ppc

bam.o

vec560p.o

<< list of the application objet files >>

"C:\Program Files\COSMIC\CXPPC\Lib\libiv.ppc" # libraries

"C:\Program Files\COSMIC\CXPPC\Lib\libmv.ppc" # libraries

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 7 - 02/11/2010

+def __sram=pstart(sdata) # start address of bss

+def __memory=pend(sbss) # symbol used by library

+def __stack=0x4000A000 # stack pointer initial value

+def __sdata=0x40008000 # data pointer value

+def __eram=__stack # ram end address

+def __sconst=0x78000 # constants start address

As you can see, most of the lines define segments (+seg) or symbols (that will be used in the

startup file, explained in the next chapter), or object files (only 3 often used object files are

specified here, but the list can be much longer, typically as long as the number of source files

in the application).

Let’s comment the lines one by one in order to see what they do and what happens if we

change some of the parameters they contain (that is, some typical errors to avoid):

+seg .rchw -b 0 -m 0x4000 -n rchw -k # bam start address

defines a segment named “rchw” (without the dot, it’s the parameter of the –n option) that

will contain section(s) of the type .rchw (in the Cosmic examples, this section is used to

produce a single costant, the BAM value). This segment will be located at address 0 (as

specified by the –b parameter and as required by the hardware) and its maximum size

(including the size of all segments attached to it, see the next line) will be of 0x4000 bytes

(that is, the link will give an error of type “segment overflow” only when this limit is

reached). The –k parameter tells the linker that this segment is a “root” in the call tree of the

application: when the dead code removal is enabled with the +split compiler option, segments

with the –k option are kept (not discarded) even if they are not called from anywhere else in

the application.

+seg .vector -a rchw -n vect -r 11 -k # vectors

defines a segment named “vect” (note that the name can be omitted if it is not used anywhere

else in the linker file) that will contain section(s) of the type .vector (in the Cosmic examples,

this section is used to produce a table of constants, the Interrupt Vectors). This segment will

not be located at an absolute address (no –b option), but rather be attached (-a option) to the

segment named “rchw”. This means that the starting address of this segment depends on the

size of the previous one. Typically the vectors should therefore start at address 0x4, but the –

r11 parameter make sure that this address is aligned on at least 11 bits (as required by the

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 8 - 02/11/2010

hardware), so the vectors are actually located at address 0x800, as you can easily verify in the

map file:

start 00000800 end 00001000 length 2048 segment vect

Note that this segment is marked with the –k option as well: if you forget this parameter, the

interrupt routines will be removed by the linker, because they are not “called” from anywhere

in the main flow.

The rule to follow for the dead code removal is quite simple in the end: use the +split option

on the compiler and put –k on the BAM and Vectors segments.

+seg .vtext -b 0x4000 -m 0x6c000 -n vtext -it -r 2 # code

defines a segment named “vtext” that will contain sections of the type .vtext . This segment

will contain the executable code, or, to be precise, the VLE part of the executable code.

Code will start at address 0x4000 (an arbitrary value chosen to leave some space after the

vectors “just in case” that can be still addressed by r0) and its maximun size will be 0x6c000

(444kb). This value depends both on the derivative chosen (how much FLASH is available)

and the memory layout (how much place do you leave for constants and where you place

them). If you calculate it wrongly, several kind of errors can happen:

- if you put a number smaller than the real, the linker will complain that there is no

more memory (“segment overflow” message) even when this is not true

- if you put a number bigger than real, in this specific case you will have a linker

message saying that segment “text” and “sconst” overlap, but in another typical case,

where constants are just appended after the code instead of being located at an

absolute address, you can have far more strange behaviours, as the linker produces a

code bigger than the available memory without any error or warning

Note also the –it flag that tells the linker that the initialization table (a table used by the

startup file to copy the initial values of initialized variables from ROM to RAM) should be

attached to this segment.

The –r2 parameter tells the linker that this segment must be aligned on a least 2 bits: actually

one bit (-r1) would be enough for VLE code, but since VLE and standard code can be mixed

on some derivatives, it is better to leave –r2 on all executable segments.

+seg .sconst -b 0x70000 -o 0x8000 -m 0x10000 -n sconst -r 2 # constants

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 9 - 02/11/2010

defines a segment named “sconst” that will contain sections of the type .sconst . This segment

will contain the constants that are declared @dir, either implicitly (all memory models) or

explicitly. The constants in this segment will be located at address 0x70000, that is, in the last

(highest) 64k of memory for the device we are using. The –m parameter tells that the max size

of this segment is 64k: if we do not specify this, strange (and difficult to debug) things can

happen: the linker will not complain for @dir constants >64k, but since the addressing is only

on a 16 bits offset, you will end up with some constants overlapping each other. The –o

parameter sets the logical start address: for the PPC this value is always 0x8000 because the

offsets used in the load and store instructions are signed.

+seg .sdata -b 0x40000000 -o0x8000 –m0xA000 -n sdata -r 2 -id # data

defines a segment that will contain the initialized data (coming from C declarations like int

myvar = 10;) declared @dir, either implicitly (+modv or similar memory models) or

explicitly. The segment will start at 0x40000000 (this is forced by the hardware and could

vary between one derivative and another), and have a maximum size including whatever is

attached to it (in our case the .sbss -> all variables, initialized + non initialized), of 40k. This –

m0xA000 parameters is worth some considerations:

- we have set this value to the maximum size of RAM available: this means that the

linker will not complain until we reach 40k, but the application will stop working

before that, because the stack, which is placed at the end of the memory and grows

backwards, will overlap with the variables (which leads to seemly random, difficult to

debug application crashes)

- Another choice could have been to set the limit lower, so that we are sure to leave at

least some place for the stack: this is possibly a good idea, but since the stack size is

not known at compile time anyway (although it can be estimated under some

restrictions) it’s difficult to set a meaningful value.

- This value should never be set bigger than 0xFFFF (even if some micros has a RAM

bigger than that), since this segment is address with a 16 bits offset; see the

explanation for segment .sconst

The –id parameter tells the linker that this segment contains initialized data: if you forget to

specify it, your data will not be initialized at startup and will contain random values (at best

all zeros) at the beginning of the application.

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 10 - 02/11/2010

+seg .sbss -a sdata -n sbss # uninitialized data

defines a segment that will contain the non initialized data (coming from C declarations like

int myvar;) declared @dir, either implicitly (+modv or similar memory models) or explicitly.

This segment is appended to the previous one, so we don’t know its start address before

linking (this information can be found in the map file). Note that all features and checks of

this segment (alignment, maximum size..) are inherited from the segment it is appended to.

+def __sbss=pstart(sbss) # start address of bss

defines a symbol named _sbss that will be used somewhere else (typically in the startup file,

see next chapter). In this case the symbol is set to the value of the start of the segment named

“sbss” and is used to force to zero all the non-initialized variables.

crtsivc.o

bam.o

vec560p.o

<< list of the application objet files >>

This is the list of the object files that must be linked. The first 3 are pretty standard but can

vary (especially the startup file: several versions exist even in you stay within the Cosmic-

provided libraries), while the rest is completely application dependent. The order is not

important. Note that the list of files can be redirected to an external text file for easying

automatic builds of similar configurations.

"C:\Program Files\COSMIC\CXPPC\Lib\libiv.ppc" # libraries

"C:\Program Files\COSMIC\CXPPC\Lib\libmv.ppc" # libraries

Specify the libraries to be linked. A few notes:

- libraries must be linked after the object files

- the order of libraries is important

- the number of libraries depends on the complexity of the application

o libm : always needed

o libi : almost always needed (when doing complex operations on integers)

o libf: (not linked in this example) needed only when using floating point

- different memory models require different libraries: see the UM for details

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 11 - 02/11/2010

+def __sram=pstart(sdata) # start address of bss

+def __memory=pend(sbss) # symbol used by library

+def __stack=0x4000A000 # stack pointer initial value

+def __sdata=0x40008000 # data pointer value

+def __eram=__stack # ram end address

+def __sconst=0x78000 # constants start address

define some symbols that will be used in the startup file, see the next chapter.

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 12 - 02/11/2010

Customizing the startup file

The startup file contains code that is executed immediatly after the reset and before the

application starts. A typical startup code, as provided by Cosmic both in source and object

formats, will do the following

- Initialize some registers (mainly the stack pointer)

- Initialize variables if required (by copying their initial value from ROM to RAM)

- Clear (set to zero) the non-initialized variables (and/or all the rest of the memory)

- Jump to main

The startup file must be modified/customized in the following cases:

- you are using a special configuration (set of compiler options and/or linker file) for

which Cosmic does not provide a pre-compiled startup

- you write your own startup because you want/need special features and/or you have

strict timing requirements (example: no time to zero all the memory before starting the

application)

If you need to modify the startup file, it is important to understand how it works and how

it is related to the linker file: the linker file defines some values that are used in the

startup, as can be seen in the example below, showing the startup file that goes with the

linker file explained in the previous chapter:

Note: this startup file is not one of those provided by Cosmic in the compiler package

(although it is very similar to them): if you want to write your own startup file please copy

and then modify the startup that is in the compiler package.

; Sample C Startup code with data initialization and R2 initialization to address 64k constants

; Copyright (c) 2010 by COSMIC Software

;

 xdef _exit, __stext

 xref _main, __memory, __sdata, __sbss, __stack, __sconst, __idesc__, __eram

;

ifdef VLE

 vle on

.vtext: section .text

endif

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 13 - 02/11/2010

;

atab:

 dc.l __sdata ; init value of data pointer

 dc.l __sram-4 ; start of ram to clear

 dc.l __eram-4 ; end of ram to clear

 dc.l __stack ; init value of stack pointer

 dc.l __idesc__ ; descriptor start address

 dc.l __sconst

__stext:

 lis r3,.atab ; get table

 addi r3,.atab ; address

 lwz r4,4(r3) ; get start of ram

 lwz r5,8(r3) ; get end of ram

 sub. r5,r4 ; byte size

 beq init ; empty, skip

 srwi r5,2 ; word size

 li r0,0 ; to clear the bss

 mtctr r5 ; set counter

zbcl:

 stwu r0,4(r4) ; clear memory

 bdnz zbcl ; count down and loop back

init:

 lwz r1,12(r3) ; initialize SP

 lwz r4,16(r3) ; descriptor address

 lwz r5,0(r4) ; first image address

idbcl:

 subi r5,4 ; adjust address

dbcl:

 lwzu r2,4(r4) ; get flag word

 cmpi r2,0 ; test flag

 beq start ; end continue

 andis. r2,$6000 ; test for moveable code segment

 beq skip ; yes, skip it

 lwzu r6,4(r4) ; ram start address

 lwzu r2,4(r4) ; code end address

 subi r2,4 ; adjust address

 sub r2,r5 ; block size

 srwi r2,2 ; word size

 mtctr r2

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 14 - 02/11/2010

 subi r6,4 ; adjust address

cbcl:

 lwzu r0,4(r5) ; get and

 stwu r0,4(r6) ; store

 bdnz cbcl ; count down and loop back

 b dbcl ; next segment

skip:

 lwzu r5,8(r4) ; load next code address

 b idbcl ; and loop back

start:

 lwz r13,0(r3) ; initialize DP

 lwz r2,20(r3) ; initialize R2 to point at constants

 bl _main ; execute main

_exit:

 b _exit ; stay here

;

 end

Let’s comment the most significant parts:

xdef _exit, __stext

is needed to make sure that some symbols defined in this file are “visible” to other

modules that need them. For example the __stext symbol is used in the BAM (you can

check the source file bam.c that is provided with the Cosmic exmaples) in such a way that

the execution jumps to this label just after the chip reset.

xref _main, __memory, __sdata, __sbss, __stack, __sconst, __idesc__

this line tells the assembler that these symbols are used in this file, but are defined

elsewhere. Some of them are defined in the source files of the application (in this case

only one: _main) and some are defined in the linker file. Note that, for those symbols

defined in C source files, you need to add an underscore (“_”) at the beginning in order to

use them in assembler.

ifdef VLE

 vle on

.vtext: section .text

endif

COSMIC SOFTWARE
Getting started with the PPC Tools – Compiler options and linker file

Application Note N °73 - 15 - 02/11/2010

this block will assemble the file in VLE or Standard mode depending on the fact that the

VLE symbol is defined -> you must add a “-dVLE” on the assembler command line if you

use a VLE derivative, otherwise your application will not work.

After this, there are two main loops: one that will initialize the whole memory to zero ,

and another that will initialize the “initialized data segments” (that is, all segment with the

–id options: typically .sdata and/or .data, but you can add your own segments containing

initialized data and they will be managed here)

Note: due to the RAM Error Correction Code (ECC) implemented in most PPC chips, it is

mandatory that the whole RAM is set to 0 in a loop that write 4 bytes at a time before any

other kind of RAM access (reading or writing 1 byte or 1 half word), as it is done in this

example.

In the end, the registers are initialized:

init:

 lwz r13,0(r3) ; initialize DP

 lwz r2,20(r3) ; initialize R2 to point at constants

and the execution jumps to the application (that MUST start at “main()”)

 bl _main ; execute main

